

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology for DOE Solar Energy Technologies Program Peer Review

John Wohlgemuth - April, 2007

OUTLINE OF TALK

- Overall Program Objectives
- Target Markets
- Program Tasks
- Technical Approach
- Team Members and their Activities
- Proposed TPP Collaborative Activities

OVERALL PROGRAM OBJECTIVES

- Accelerated development of multicrystalline silicon technology.
- Module designed for use in residential and commercial markets with products designed specifically for these applications.
- System components designed to add value to electricity produced.

Specific Objectives

- Module cost reductions to:
 - 67% of today's costs by 2010
 - 50% of today's costs by 2015
- System cost reduction to:
 - 60% of today's costs by 2010
 - 36% of today's costs by 2015
- Levelized cost of electricity in 2015 of
 - 8 to 10 ¢/kWh for residential
 - 6 to 8 ¢/kWh for commercial

Target Markets

- Selected residential and commercial markets because they:
 - Represent more than 70% of the overall US PV market.
 - Are the two markets that will likely meet grid parity first.
 - Are two market segments in which product development can lead to the added value necessary to generate PV market growth before reaching grid parity.

Program Tasks

- Silicon Feedstock
- Casting
- Wafering
- Cells and Contacts
- Modules
- Manufacturing

- Inverter
- Monitoring and BOS
- System Engineering and Integration
- Installation and Maintenance
- Deployment

Silicon purification

- Process development of solar grade silicon.
- Use of SoG Si in Casting.

Casting

- Implementation of Mono^{2™} technology (single crystal quality at multicrystalline cost).
- Development of larger casting stations & crucibles.

Wafering

- Use of thinner wafers down to 150 μ m in 2010 and 100 μ m in 2015.
- Thinner wire and improved slurry with recycle.
- Automated wafer demount and clean.

Cell Process

- Optimized design and processing for ultra-thin Mono^{2™} to achieve cell efficiencies of 18% by 2010 and 20% by 2015.
- Development of advanced metallization systems and materials.
- Assessment of back contact cell technology.

Module

- Products designed for integration into specific roof types.
- Materials cost reductions.
- Improved reliability and increased safety for operation at high voltages.
- Improved energy collection.

Manufacturing

- Automated handling to transition from hundreds of cells per hour to hundreds of cells per minute.
- Improved process control.

Inverters

- Develop a residential inverter that can be remotely monitored and controlled, that accepts high voltage PV input and can charge a back-up battery.
- Improve inverter efficiency and increase lifetime.

Monitoring & BOS

- Improved system monitoring and control with low cost components.
- Improved reliability and lower cost of connectors
- Develop and test an arc monitoring and suppression system.

System Engineering and Integration

- Integrated solutions using a limited number of building blocks.
- Ancillary components integrated into major systems elements.

Installation and Maintenance

- Design of products to minimize time required on site.
- Systems and components designed for ease of accessibility for troubleshooting, maintenance and replacement.

Indirect costs

- Reduction of indirect costs through organized deployment and integrated solutions.
- Collaborative activities to address interconnection rules and codes.
- To achieve parity with the grid and grow to Gigawatt levels of production will require involvement of the entire product chain.

Dow Corning Corporation

- Silicon feedstock Development of SoG Si
- Conductive powders Replace Ag in Metallization
- Passivating dielectrics Reduction in surface recombination velocities
- Adhesives for frames and junction boxes
- Pottants for junction boxes
- Encapsulants for improved reliability and longer life

Ceradyne-thermo Materials

- Reduced impurities in ceramic crucibles used for casting
- Larger size crucibles for larger casting stations

- Bekaert Corporation
 - Development of reduced diameter wire for wafering
- Ferro Corporation
 - Development of Al-B paste for BSF on ultra-thin cells.
 - Development of front pastes with reduced Ag
 - Evaluate materials for non-contact printing
- Palo Alto Research Center (PARC)
 - Develop new approaches to printing metallization.
- Specialized Technology Resources, Inc. (STR)
 - Qualify and commercialize faster cure encapsulant
 - Develop fire retardant encapsulant
 - Optimize back encapsulant to reduce cost.

- AFG Industries, Inc.
 - Qualify and commercialize AR Coated Glass
 - Engineer automated equipment to reduce cost and increase throughput.
- Recticel N.A. Inc.
 - Assist BP Solar in development of plastic frames and support structures for integrated PV products.
- Komax Systems York
 - Screen printer optimization for ultra-thin cells
 - Tabbing and stringing equipment for ultra-thin cells
 - High speed automation for ultra-thin cells.

- ATS Ohio, Inc.
 - Wafer and cell handling equipment for ultra-thin cells.
 - In-line process monitoring and control.
- Xantrex Technology Inc.
 - Develop a residential inverter that can be remotely monitored and controlled, that accepts high voltage PV input and can charge a back-up battery.
 - Improve inverter efficiency and increase lifetime.

Fat Spaniel Technologies

- Develop a system for acquiring and storing data on PV system performance and status.
- Develop interface that allows PV electricity to be dispatched when it has the maximum value.

Georgia Institute of Technology

- High efficiency cell development.
- Characterize materials (Mono^{2™}) and BP Solar cells.
- Device modeling to guide cell development and assess back contact structures.

Arizona State University

- Building integrated product design.
- Next generation inverter development.
- Module qualification testing
- Module and system performance testing.

UCF/FSEC:

- Module and connector reliability testing
- Module performance testing
- Module qualification testing.

SMUD

- Customer interface
- Component and System performance testing
- Utility prospective on value of PV electricity.

Proposed Collaborative Activities

- Standards and Codes
 - IEEE
 - ASTM
 - IEC
 - UL
- Public Education for PV
 - Decathlon
 - Develop education package for elementary school children

Proposed Collaborative Activities

- Development of accelerated tests for modules and systems
- Removal of non-technical barriers
 - Interconnect rules
 - Building permits